Acknowledgement

- We are grateful for the data, technical, and research support provided by the MLDS Center and its agency partners. The views and opinions expressed are those of the authors and do not necessarily represent the views of the MLDS Center or its agency partners. The contents of this presentation were developed under a grant from the Department of Education. However, these contents do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government.
Overview

- “Mobility” is a complex and ongoing issue in education settings

Overview

School Level

Student Level

Teacher Level
Overview

- Common modeling procedures to handle mobility in education:
 - Multiple membership random effects model (MMREM; Browne, Goldstein, & Rasbash, 2001)
 - Use observed student mobility as a predictor or outcome in regression
 - Ignore it!
Overview

• We propose an alternative approach—multilevel network analysis

• Our findings, in brief:
 • Network models are capable of handling the complex dependencies among schools
 • Real data may contain few cluster-level observations and few nodes within clusters, which is problematic for estimation
Outline

• Introduction to mobility
• Social network modeling methods
• Results from the real data illustration
• Where do we go from here?
Patterns of Mobility

Students are mobile...but in a particular way

(Kerbow, 1996; Kerbow, Azcoitia, & Buell, 2003)
Patterns of Mobility

Students are mobile...but in a particular way
Patterns of Mobility

Students are mobile...but in a particular way
Patterns of Mobility

Students are mobile...but in a particular way

- Current “best practices” recommendations in education indicate the use of MMREMs
- MMREMs are problematic because they don’t account for complex relations among schools
Multiple Membership Model

\[\omega \sim N(\mathbf{Z}_w \cdot \beta, \tau_{00}) \]

\[y \sim N(\omega + X \cdot \gamma, \sigma^2) \]

- Weights are often assigned (not estimated) as \(1/H\), where \(H\) is the number of schools attended by student \(i\)

- A naive, first-school approach is a special case of this model where the first school is given a weight of 1 and subsequent school weights are set at 0

- \(\mathbf{Z}_w\) is constructed as \(w_{i,1} \cdot z_{p,1} + \ldots + w_{i,H} \cdot z_{p,H}\) - assumes 0 correlation between schools
Correlations Among School Residuals (J=266)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. First School Attended</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Second School Attended</td>
<td>0.479</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>3. Third School Attended</td>
<td>0.396</td>
<td>0.392</td>
<td>—</td>
</tr>
</tbody>
</table>
What do real data tell us? (HS Algebra)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. First School Attended</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2. Second School Attended</td>
<td>0.432</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3. Third School Attended</td>
<td>0.359</td>
<td>0.375</td>
<td>—</td>
</tr>
</tbody>
</table>
What do simulations tell us?

Where do MMREMs fail?

- High Correlation (all)
- Gets worse with increasing ICC
What do simulations tell us?

Where do MMREMs fail?

- High Correlations (0.25, 0.50)
- Gets worse with increasing ICC
Goals of the Current Study

• Demonstrate the need for more appropriate methodological approaches to student mobility

• Illustrate the use of network analyses in this context using statewide longitudinal data

• Provide guidelines for future methodological studies
What is a Social Network?

- A social network is a set of relations or ties among individuals or entities.
 - Online relationships – e.g. Facebook (Lewis et al., 2008)
 - Friendships and personal relationships (Ennett and Bauman, 1993)
 - Workplace relationships (Krackhardt and Porter, 1986; Spillane et al., 2012)
 - Political alliances (Smith and White, 1992)
Social Network Analyses

Social Selection

Network as outcome variable
Estimate the impact of covariates on network ties

Social Influence

Network as a “predictor”
Estimate the impact of network ties on some outcome of interest
Constructing Mobility Networks

• Utilize statewide longitudinal data from the Maryland Longitudinal Data System

• Advantages: provides census-level information on students and professionals living and working in Maryland
Maryland High School Facts

- Maryland is a state with 24 counties

- In 2014, there were 174 schools in MD classified as public high schools serving students grades 9 - 12 (excluding Charter, Vocational, K through 12, and other alternative schools).

- The total Grade 9 enrollment for these schools in 2014 was 201945.

- Among students in Grade 9 alone, the mobility rate in 2014 was approximately 47%, with about 16.5% coming from mid-year entries and about 30.5% coming from mid-year exits.
A toy example:
A toy example:

Sch. A (get) — Sch. B (get) — Sch. A (get) — Sch. B (get)

Sch. A (send) — Sch. B (send)

2 0 3 0

23
Maryland School Networks
Visualization by Covariates
Descriptives: Node-level disruption

Out-degree: the number of ties sent by a node

In-degree: the number of ties received by a node
Predicting a Network

To predict binary (ordinal) network ties, we could use logistic (ordinal/probit) regression.

Standard GLMs assume independent observations.

Network ties are NOT independent.
Latent Space Model (for binary ties)

\[
\text{logit} \, P[Y_{ij} = 1] = \beta X_{ij} - |Z_i - Z_j|
\]

- \(Y_{ij}\) is the value of the tie from node \(i\) to node \(j\)
- \(X_{ij}\) is a set of covariates
- \(Z_i\) is the latent space position for node \(i\)

We assume ties are independent conditional on the latent space positions.
Latent Space Positions
Hierarchical Latent Space Models

\[P(Y|X, \Theta) = \prod_{k=1}^{K} \text{LSM for } Y_k \]

\[(\Theta_1, \ldots, \Theta_K) \sim F, \]

Implementation of the HLSM

• Aggregated student-level, school-level information, and county-level information assessed
 • Aggregated student-level
 • FARMS, suspensions, assessment performance, attendance
 • School-level
 • Previous year graduation and college enrollment rates
 • County-level
 • Previous-year average county wages, expenditures per student
Selected trace plots for the full HLSM
Examples of parameter non-convergence

County-Level Expenditures Per Student (Sender)

County-Level Expenditures Per Student (Receiver)
County-Level Expenditures Per Student

(Sender)

(Receiver)
Percent of FARMS Eligible Students

(Sender)

(Receiver)
Results summary

- County-level expenditures have an important school sender/receiver effects above and beyond aggregated student characteristics (more $$ = more students received)

- Measures of student poverty remained important predictors of network ties for many counties (higher poverty rates increased the likelihood of observing a tie for both sender & receiver schools)
Where do we go from here?

- Future methodological work needed to investigate the following issues
 - Small cluster-level sample sizes and within-network sample sizes are problematic for estimation
 - Social selection models do not fully place mobility networks in their causal systems
- Explore use of multilevel social influence modeling against MMREMs

Contact

Tessa L. Johnson
johnsont@umd.edu
@tessajolee