Computer Science for All? The Impact of High School Computer Science Courses on College Majors and Earnings

Jing Liu Cameron Conrad David Blazar

MLDS Center Research Series Virtual Brown Bag

February 16, 2024

Liu, Conrad, Blazar

University of Maryland

February 16, 2024

		[[]	୬୯୯
Liu, Conrad, Blazar	University of Maryland	February 16, 2024	2 / 27

- Growing importance of computing skills in the workplace due to the fast digitalization of U.S. economy
 - 9% of occupations required high digital skills in 2002 \rightarrow 26% in 2020 (Muro & Liu, 2023)
 - Employment in computer and information technology is projected to grow by 10% from 2022 to 2032 (Bureau of Labor Statistics, 2023)

- Growing importance of computing skills in the workplace due to the fast digitalization of U.S. economy
 - 9% of occupations required high digital skills in 2002 \rightarrow 26% in 2020 (Muro & Liu, 2023)
 - Employment in computer and information technology is projected to grow by 10% from 2022 to 2032 (Bureau of Labor Statistics, 2023)
- Shortage of talents in computing
 - 450,000 open computing jobs in 2022, but only 90,000 students who received a computer science (CS) Bachelor degree (Code.org)

イロト 不得 ト イヨト イヨト

- Growing importance of computing skills in the workplace due to the fast digitalization of U.S. economy
 - 9% of occupations required high digital skills in 2002 \rightarrow 26% in 2020 (Muro & Liu, 2023)
 - Employment in computer and information technology is projected to grow by 10% from 2022 to 2032 (Bureau of Labor Statistics, 2023)
- Shortage of talents in computing
 - 450,000 open computing jobs in 2022, but only 90,000 students who received a computer science (CS) Bachelor degree (Code.org)
- Large gaps by gender, race/ethnicity, and socioeconomic backgrounds
 - Only 25% of all computing jobs are held by women (Ashcraft et al., 2016)
 - Large disparities by race/ethnicity and socioeconomic status as well

		< 口 > < 圖 > < 圖 > < 필 > < 필 > = 필	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Liu, Conrad, Blazar	University of Maryland	February 16, 2024	3 / 27

- Fast expansion of CS coursework in K-12 schools
 - Only about 35% of U.S. public high schools offered a CS course in 2017-2018 \rightarrow 53% in 2021-2022 (code.org)

- Fast expansion of CS coursework in K-12 schools
 - Only about 35% of U.S. public high schools offered a CS course in 2017-2018 \rightarrow 53% in 2021-2022 (code.org)
- "CS for All" Initiatives
 - Many states (e.g., VA and DC) and school districts (e.g., NYC and Chicago) have implemented similar initiatives
 - 27 states now require high schools to offer a computer science course, with 5 of those states requiring a CS course for graduation (AR, NE, NV, SC and TN)

3/27

- Fast expansion of CS coursework in K-12 schools
 - Only about 35% of U.S. public high schools offered a CS course in 2017-2018 \rightarrow 53% in 2021-2022 (code.org)
- "CS for All" Initiatives
 - Many states (e.g., VA and DC) and school districts (e.g., NYC and Chicago) have implemented similar initiatives
 - 27 states now require high schools to offer a computer science course, with 5 of those states requiring a CS course for graduation (AR, NE, NV, SC and TN)
- MD CS for All legislation passed in 2018
 - All high schools need to offer at least one "high-quality" CS course by school year 2021-22

イロト イヨト イヨト ・

- Fast expansion of CS coursework in K-12 schools
 - Only about 35% of U.S. public high schools offered a CS course in 2017-2018 \rightarrow 53% in 2021-2022 (code.org)
- "CS for All" Initiatives
 - Many states (e.g., VA and DC) and school districts (e.g., NYC and Chicago) have implemented similar initiatives
 - 27 states now require high schools to offer a computer science course, with 5 of those states requiring a CS course for graduation (AR, NE, NV, SC and TN)
- MD CS for All legislation passed in 2018
 - All high schools need to offer at least one "high-quality" CS course by school year 2021-22
- Little research on how the introduction of CS coursework affects student long-run outcomes

		(ㅁ) 《왕 《왕) 《왕 종	∎ ୬୯୯
Liu, Conrad, Blazar	University of Maryland	February 16, 2024	4 / 27

 Earlier work in economics on how courses student take affect their labor market outcomes (e.g., Altonji 1995, Levin & Zimmerman 1995)

- Earlier work in economics on how courses student take affect their labor market outcomes (e.g., Altonji 1995, Levin & Zimmerman 1995)
- More recent literature studies the impact of math, Science, general STEM, career and technical education, and advanced placement courses (e.g., Goodman 2019; De Philippis 2021; Görlitz and Gravert 2018; Dougherty 2018; Jackson 2010, 2014)

- Earlier work in economics on how courses student take affect their labor market outcomes (e.g., Altonji 1995, Levin & Zimmerman 1995)
- More recent literature studies the impact of math, Science, general STEM, career and technical education, and advanced placement courses (e.g., Goodman 2019; De Philippis 2021; Görlitz and Gravert 2018; Dougherty 2018; Jackson 2010, 2014)
 - Increasing secondary STEM course offerings raises educational attainment and likelihood of earning STEM degrees, especially for males (De Philippis 2021; Broecke 2013; Görlitz and Gravert 2018; Darolia et al., 2020)
 - Providing more advanced secondary math coursework increases educational attainment, math-intensive degree receipt, and earnings (Rose and Betts 2004; Goodman 2019; Levine and Zimmerman 1995; Joensen and Nielsen 2016)

- Earlier work in economics on how courses student take affect their labor market outcomes (e.g., Altonji 1995, Levin & Zimmerman 1995)
- More recent literature studies the impact of math, Science, general STEM, career and technical education, and advanced placement courses (e.g., Goodman 2019; De Philippis 2021; Görlitz and Gravert 2018; Dougherty 2018; Jackson 2010, 2014)
 - Increasing secondary STEM course offerings raises educational attainment and likelihood of earning STEM degrees, especially for males (De Philippis 2021; Broecke 2013; Görlitz and Gravert 2018; Darolia et al., 2020)
 - Providing more advanced secondary math coursework increases educational attainment, math-intensive degree receipt, and earnings (Rose and Betts 2004; Goodman 2019; Levine and Zimmerman 1995; Joensen and Nielsen 2016)
- This is the first causal study that evaluates how CS coursework affects student postsecondary and labor market outcomes

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

	4		৩৫৫
Liu, Conrad, Blazar	University of Maryland	February 16, 2024	5 / 27

• Data: K-12, postsecondary education, and earnings data from the Maryland Longitudinal Data System (MLDS)

イロト 不得 トイヨト イヨト

э

- Data: K-12, postsecondary education, and earnings data from the Maryland Longitudinal Data System (MLDS)
- Identification:
 - Exploit the staggered rollout of high-quality (HQ) CS course offerings across high schools in MD and certain cohorts' unexpected exposure to HQ CS
 - Difference-in-Differences and Instrumental Variables

< □ > < □ > < □ > < □ > < □ > < □ >

- Data: K-12, postsecondary education, and earnings data from the Maryland Longitudinal Data System (MLDS)
- Identification:
 - $\bullet\,$ Exploit the staggered rollout of high-quality (HQ) CS course offerings across high schools in MD and certain cohorts' unexpected exposure to HQ CS
 - Difference-in-Differences and Instrumental Variables
- Findings:
 - Taking a CS course did not change likelihoods of high school graduation or earning a BA degree, but significantly increased the chance of majoring in CS in first-/second-year of college and earning a CS BA degree
 - Unexpected exposure to HQ CS courses also raised students' chance of employment and annual earnings at age 24
 - Effects are larger for female, low-income, and Black students for CS BA degree receipt and labor market outcomes
 - However, take-up rates are lower for female, Black, Hispanic, and low baseline math scores students

Liu, Conrad, Blazar

University of Maryland

Policy Background

			৩৫৫
Liu, Conrad, Blazar	University of Maryland	February 16, 2024	6/27

Policy Background

- MD HB 281 CS Education for All legislation required all HS to offer high-quality (HQ) CS by 2021-2022
 - Established the Maryland Center for Computing Education (MCCE)
 - MCCE convened an expert panel to provide a streamlined HQ CS definition based on the alignment between School Codes for the Exchange of Data and the Maryland Computer Science Standards
 - HQ vs. Any CS

< ロ > < 同 > < 回 > < 回 > < 回 > <

Policy Background

- MD HB 281 CS Education for All legislation required all HS to offer high-quality (HQ) CS by 2021-2022
 - Established the Maryland Center for Computing Education (MCCE)
 - MCCE convened an expert panel to provide a streamlined HQ CS definition based on the alignment between School Codes for the Exchange of Data and the Maryland Computer Science Standards
 - HQ vs. Any CS

SCED Code		SCED Course Title	CS Course Type	Ν	Percent
10971	Computer Science Esse	ntials-CTE	Foundational CS	726	27.76%
10970	Foundations of Comput	er Science-CTE	Foundational CS	293	11.20%
10201	Web Page Design		Foundational CS	261	9.98%
10012	Exploring Computer So	ience	Foundational CS	136	5.20%
10171	Information Technology	-Other	Foundational CS	75	2.87%
10952	Advanced Computing (Concepts and Information Technologies-CTE	Foundational CS	-	-
10951	Introduction to Program	nming and Applications-CTE	Foundational CS	-	-
10972	AP Computer Science	Principles-CTE	AP CS	597	22.83%
10973	AP Computer Science .	A-CTE	AP CS	182	6.96%
10157	AP Computer Science .	A	AP CS	104	3.98%
10011	Computer Science Prin	ciples	AP CS	85	3.25%
10019	AP Computer Science	Principles	AP CS	33	1.26%
10155	Java Programming		Programming & Cybersecurity	51	1.95%
10152	Computer Programmin	g	Programming & Cybersecurity	40	1.53%
10154	C++ Programming		Programming & Cybersecurity	-	-
10153	Computer Programmin	g - Other Language	Programming & Cybersecurity	-	-
10108	Network Security		Programming & Cybersecurity	-	-
10020	Cybersecurity		Programming & Cybersecurity	-	-
Liu. Conrad	Blazar	University of Maryland	February 1	6. 20)24

6/27

Table 1: Distribution of High-Quality Computer Science Course-Taking in Analytic Sample

Policy Background: School and District Rollout

Liu, Conrad, Blazar

University of Maryland

February 16, 2024

э

Data: Overview

- Linked administrative data from the Maryland Longitudinal Data System (MLDS) Center
 - 2008-2019 K-12 student enrollment data
 - 2013-2021 course data
 - 2008-2021 HS graduation
 - 2008-2022 postsecondary enrollment, graduation, majors, and earnings

< ロ > < 同 > < 回 > < 回 > < 回 > <

Data: Overview

- Linked administrative data from the Maryland Longitudinal Data System (MLDS) Center
 - 2008-2019 K-12 student enrollment data
 - 2013-2021 course data
 - 2008-2021 HS graduation
 - 2008-2022 postsecondary enrollment, graduation, majors, and earnings
- Outcome variables:
 - First-year "enroll" in college and CS major
 - Second-year "persist" in college and CS major
 - College graduation, CS degree, and degrees in other fields
 - Employment and income for ages 23-25

イロト イヨト イヨト ・

			୬୯୯
Liu, Conrad, Blazar	University of Maryland	February 16, 2024	9 / 27

• Data unique at the HS enrollee level, including 2008-09 to 2016-17 9th grade cohorts who attended regular public high schools

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- Data unique at the HS enrollee level, including 2008-09 to 2016-17 9th grade cohorts who attended regular public high schools
- Sample restrictions:
 - Drop students enrolled in high schools that were already offering Any CS in 2013 \rightarrow so we know when a school in our sample started to offer HQ CS

< □ > < □ > < □ > < □ > < □ > < □ >

- Data unique at the HS enrollee level, including 2008-09 to 2016-17 9th grade cohorts who attended regular public high schools
- Sample restrictions:
 - Drop students enrolled in high schools that were already offering Any CS in 2013 \rightarrow so we know when a school in our sample started to offer HQ CS
 - Drop outgoing transfers and incoming transfers (first observation in 10-12th grade)→so we can observe full course-taking history for our sample

イロト 不得 ト イヨト イヨト

- Data unique at the HS enrollee level, including 2008-09 to 2016-17 9th grade cohorts who attended regular public high schools
- Sample restrictions:
 - Drop students enrolled in high schools that were already offering Any CS in 2013 \rightarrow so we know when a school in our sample started to offer HQ CS
 - Drop outgoing transfers and incoming transfers (first observation in 10-12th grade)→so we can observe full course-taking history for our sample
 - Drop 9th grade cohorts who enrolled in high school after the school first began offering HQ CS→alleviates concerns on sorting

- Data unique at the HS enrollee level, including 2008-09 to 2016-17 9th grade cohorts who attended regular public high schools
- Sample restrictions:
 - Drop students enrolled in high schools that were already offering Any CS in 2013 \rightarrow so we know when a school in our sample started to offer HQ CS
 - Drop outgoing transfers and incoming transfers (first observation in 10-12th grade)→so we can observe full course-taking history for our sample
 - Drop 9th grade cohorts who enrolled in high school after the school first began offering HQ CS→alleviates concerns on sorting
 - 50,507 students in 58 high schools

Data: Summary Statistics

	(1)	(2)
	Population	Analytic Sample
Female	0.490	0.502
Free/Reduced Lunch	0.338	0.523
Black	0.348	0.498
Hispanic	0.126	0.118
White	0.410	0.312
Asian	0.060	0.025
Multiracial	0.052	0.042
English Learner	0.035	0.037
Special Education	0.123	0.162
Math Score	-0.056	-0.435
ELA Score	0.005	-0.318
Science Score	0.009	-0.385
School Total Enrollment	1,505	990
HQ CS Exposure	0.758	0.373
Took HQ CS	0.101	0.044
Any CS Exposure	0.859	0.594
Took Any CS	0.177	0.100
HS Grad in 4 Years	0.875	0.785
Enroll in College	0.631	0.509
Enroll and CS Major	0.034	0.020
Persist in College	0.545	0.408
Persist and CS Major	0.038	0.021
BA in 4 Years	0.190	0.104
CS BA in 4 Years	0.014	0.006
Earnings Age 23	\$21,277	\$20,198
Earnings Age 24	\$24,885	\$22,857
Earnings Age 25	\$27,353	\$24,699
N	635,771	50,507
N Schools	233	58
		< □

Table 2: Summary Statistics

February 16, 2024

Treatment Timeline

• <u>Partial</u> exposure: The first high school we observe a student enrolling in offered HQ CS during the student's high school career

< □ > < □ > < □ > < □ > < □ > < □ >

Treatment Timeline

- <u>Partial</u> exposure: The first high school we observe a student enrolling in offered HQ CS during the student's high school career
- <u>Unexpected</u> exposure: for a student who is partially exposed to HQ CS, the student is considered <u>unexpectedly</u> exposed when the high school was not offering HQ CS before the student started high school

11 / 27

Treatment Timeline

- <u>Partial</u> exposure: The first high school we observe a student enrolling in offered HQ CS during the student's high school career
- <u>Unexpected</u> exposure: for a student who is partially exposed to HQ CS, the student is considered <u>unexpectedly</u> exposed when the high school was not offering HQ CS before the student started high school
- Consider a school that begins offering HQ CS in 2015

Liu, Conrad, Blazar	University of Maryland	February 16, 2024	11 / 27

イロト 不得下 イヨト イヨト 二日

Student Access to HQ CS

Liu, Conrad, Blazar

University of Maryland

February 16, 2024

Course-taking Patterns

Liu, Conrad, Blazar

University of Maryland

February 16, 2024

13/27

		(다) 《왕 《왕 《왕 《왕 왕	৩৫৫
Liu, Conrad, Blazar	University of Maryland	February 16, 2024	14 / 27

• Two layers of selection

- \bullet Selection of students into high schools based on whether HQ CS is offered \rightarrow exploit within-school cross-cohort variation in exposure to HQ CS
- Selection of students into HQ CS within a high school→only use school-level variation through instrumenting CS course-taking with unexpected exposure (only varies at school-cohort level)

14 / 27

• Two layers of selection

- \bullet Selection of students into high schools based on whether HQ CS is offered \rightarrow exploit within-school cross-cohort variation in exposure to HQ CS
- Selection of students into HQ CS within a high school→only use school-level variation through instrumenting CS course-taking with unexpected exposure (only varies at school-cohort level)
- Within-school cross-cohort variation in exposure to HQ CS by comparing cohorts unexpectedly exposed to HQ CS to unexposed cohorts

< □ > < □ > < □ > < □ > < □ > < □ >

• Two layers of selection

- \bullet Selection of students into high schools based on whether HQ CS is offered \rightarrow exploit within-school cross-cohort variation in exposure to HQ CS
- Selection of students into HQ CS within a high school→only use school-level variation through instrumenting CS course-taking with unexpected exposure (only varies at school-cohort level)
- Within-school cross-cohort variation in exposure to HQ CS by comparing cohorts unexpectedly exposed to HQ CS to unexposed cohorts
- Estimate both reduced-form (RF) and Local Average Treatment Effects (LATE) in most cases

イロト イヨト イヨト ・

Empirical Strategy

	4		୬୯୯
Liu, Conrad, Blazar	University of Maryland	February 16, 2024	15 / 27

Empirical Strategy

• Basic specification:

$$Y_{isc} = \gamma_s + \pi_c + \alpha_1 X_{isc} + \alpha_2 HQCS_{isc} + \eta_{isc}$$
(1)

- Y_{isc} refers to the outcomes for student *i* in high school *s* and cohort *c*
- $\gamma_{\rm s}$ and $\pi_{\rm c}$ refer to high school and cohort fixed effects, respectively
- X_{isc} is a vector of individual and school characteristics
- HQCS_{isc} indicates whether student i took at least one HQ CS course in school s
- α_2 measures the effects of taking HQ CS courses on student outcomes

ヘロト ヘヨト ヘヨト

Empirical Strategy

• Basic specification:

$$Y_{isc} = \gamma_s + \pi_c + \alpha_1 X_{isc} + \alpha_2 HQCS_{isc} + \eta_{isc}$$
(1)

- Y_{isc} refers to the outcomes for student *i* in high school *s* and cohort *c*
- γ_s and π_c refer to high school and cohort fixed effects, respectively
- X_{isc} is a vector of individual and school characteristics
- HQCS_{isc} indicates whether student i took at least one HQ CS course in school s
- α₂ measures the effects of taking HQ CS courses on student outcomes
 2SLS specification:

$$P(HQCS_{isc}) = \gamma_s + \pi_c + \beta_1 X_{isc} + \beta_2 PartialExpo_{sc} + u_{isc}$$
(2)

$$Y_{isc} = \gamma_s + \pi_c + \delta_1 X_{isc} + \delta_2 \widehat{HQCS}_{sc} + \epsilon_{isc}$$
(3)

• δ_2 LATE of taking HQ CS for compliers

Effects of HQ CS on Typical Educational Attainment

	(1)	(2)	(3)	(4)
	HS Grad	Enroll	Persist	BA Grad
Panel 1: RF Estimates				
Z	0.0108	0.0034	0.0006	0.0007
	(0.0095)	(0.0095)	(0.0085)	(0.0049)
Unexpo Mean	[.7675]	[.4933]	[.3918]	[.0991]
% Change	$\{1.41\%\}$	$\{.70\%\}$	$\{.15\%\}$	$\{.71\%\}$
Ν	50,507	50,507	50,507	$43,\!871$
N Schools	58	58	58	57
Panel 2: IV I	Estimates			
HQ CS	0.1751	0.0555	0.0097	0.0128
	(0.1738)	(0.1527)	(0.1362)	(0.0864)
Unexpo Mean	[.7675]	[.4933]	[.3918]	[.0991]
% Change	$\{22.81\%\}$	$\{11.25\%\}$	$\{2.48\%\}$	$\{12.87\%\}$
F-stat	16.5679	16.5679	16.5679	13.5183
Ν	50,507	50,507	50,507	$43,\!871$
N Schools	58	58	58	57

Table 3: HQ CS Effects on Educational Attainment

Liu, Conrad, Blazar

February 16, 2024

< □ > < □ > < □ > < □ > < □ > < □ >

э

Results: CS Major

	(1)	(2)	(3)	(4)	(5)	
	OLS	FS	RF	IV .	10	
	CS Maj	HQ CS	CS Maj	CS Maj	CS Maj	
Panel 1: Enroll and CS Major						
HQ CS	0.0654^{***}			0.1019^{***}	0.0738^{*}	
	(0.0130)			(0.0364)	(0.0434)	
Z		0.0617^{***}	0.0063***			
		(0.0153)	(0.0021)			
Unexpo Mean	[.0161]	[.0068]	[.0161]	[.0161]	[.0161]	
% Change	$\{405.27\%\}$	$\{911.22\%\}$	$\{38.91\%\}$	{630.99%}	$\{456.74\%\}$	
F-stat				16.3157	7.0743	
N	48,196	48,196	48,196	48,196	48,196	
N Schools	58	58	58	58	58	
Panel 2: Pers	ist and CS 1	Major				
HQ CS	0.0704^{***}			0.1200^{***}	0.1253^*	
	(0.0139)			(0.0408)	(0.0693)	
Z		0.0618^{***}	0.0074^{***}			
		(0.0154)	(0.0027)			
Unexpo Mean	[.0165]	[.0066]	[.0165]	[.0165]	[.0165]	
% Change	$\{428.01\%\}$	${944.08\%}$	$\{45.09\%\}$	$\{729.13\%\}$	$\{761.01\%\}$	
F-stat				16.2328	6.8163	
N	49,181	49,181	49,181	49,181	49,181	
N Schools	58	58	58	58	58	
Panel 3: CS I	BA in 4 Yea	rs				
HQ CS	0.0338^{***}			0.0547^{***}	0.0753	
	(0.0099)			(0.0185)	(0.0535)	
Z		0.0551^{***}	0.0030***			
		(0.0150)	(0.0010)			
Unexpo Mean	[.0043]	[.0039]	[.0043]	[.0043]	[.0043]	
% Change	{783.12%}	$\{1410.15\%\}$	$\{69.92\%\}$	$\{1267.92\%\}$	{1747.3%}	
F-stat				13.5259	8.4135	
N	43,849	43,849	43,849	43,849	43,849	
N Schools	57	57	57	57	57	
Trends					х	

Table 4: HQ CS Effects on CS Majors

Liu, Conrad, Blazar

University of Maryland

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 February 16, 2024

Results: 2SLS for Other Majors

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	\mathbf{CS}	STEM	Non- STEM	Engi	Health	Bus	Soc Sci	Hum	Edu
Panel 1: Enro	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
HQ CS	0.1019^{***}	6 -0.1301**	0.0860	-0.0876**	0.0366	0.0067	-0.0177	0.2444	-0.0489
	(0.0364)	(0.0589)	(0.1426)	(0.0347)	(0.0622)	(0.0663)	(0.0381)	(0.1703)	(0.0453)
Unexpo Mean	[.0161]	[.0434]	[.4029]	[.0166]	[.046]	[.0399]	[.0189]	[.2665]	[.0213]
% Change	$\{631\%\}$	{-300%}	{21%}	{-526%}	{80%}	{17%}	{-93%}	$\{92\%\}$	{-229%}
F-stat	16.3157	16.3157	16.3157	16.3157	16.3157	16.3157	16.3157	16.3157	16.3157
Ν	48,196	48,196	48,196	48,196	48,196	48,196	48,196	48,196	48,196
N Schools	58	58	58	58	58	58	58	58	58
Panel 2: Persi	ist and Ma	jor							
HQ CS	0.1200***	-0.1005*	0.0239	-0.0585**	0.0512	-0.0278	-0.0502	0.1065	-0.0337
	(0.0408)	(0.0536)	(0.1242)	(0.0245)	(0.0518)	(0.0532)	(0.0381)	(0.1178)	(0.0416)
Unexpo Mean	[.0165]	[.043]	[.3128]	[.0144]	[.0399]	[.041]	[.0256]	[.1759]	[.0222]
% Change	$\{729\%\}$	{-234%}	{8%}	{-405%}	$\{128\%\}\$	{-68%}	{-196%}	$\{61\%\}$	$\{-152\%\}$
F-stat	16.2328	16.2328	16.2328	16.2328	16.2328	16.2328	16.2328	16.2328	16.2328
Ν	49,181	49,181	49,181	49,181	49,181	49,181	49,181	49,181	49,181
N Schools	58	58	58	58	58	58	58	58	58
Panel 3: BA	Grad in 4	Years and	Major						
HQ CS	0.0547^{***}	-0.0494	0.0206	-0.0115	0.0516^{*}	0.0227	-0.0656	-0.0517	-0.0140
	(0.0185)	(0.0461)	(0.0871)	(0.0253)	(0.0303)	(0.0296)	(0.0428)	(0.0395)	(0.0229)
Unexpo Mean	[.0043]	[.0154]	[.0792]	[.0038]	[.008]	[.0117]	[.024]	[.0175]	[.0066]
% Change	$\{1268\%\}\$	$\{-321\%\}$	$\{26\%\}\$	{-302%}	{646%}	{194%}	$\{-274\%\}$	$\{-296\%\}$	{-211%}
F-stat	13.5259	13.5259	13.5259	13.5259	13.5259	13.5259	13.5259	13.5259	13.5259
Ν	43,849	43,849	43,849	43,849	43,849	43,849	43,849	43,849	43,849
N Schools	57	57	57	57	57	57	57	57	57

Table 5: HQ CS Course-Taking Effects on Other Majors

Liu, Conrad, Blazar

University of Maryland

February 16, 2024

A D N A B N A B N A B N

э

• Nonparametric event study specification:

$$Y_{isc} = \gamma_s + \pi_c + \phi_n \sum_{n=-3}^{4} \mathbb{1}(EventTime_{sc} = n) + v_{isc}$$
(4)

• ϕ_{n} is the effect of HQ CS exposure n cohorts before or after course is first offered

19/27

Results: Event Study

TWFE: Two-way fixed effects; SA: Sun & Abraham (2021); CS: Callaway & Sant'Anna (2021)

Liu, Conrad, Blazar

University of Maryland

February 16, 2024

20 / 27

Complier Analysis

 Table 6: Characterizing Compliers with First-Stage Coefficients

		(1)	(2)	(3)	(4)
Panel 1: Gender and Socioeconomic Status					
		Females	Males	FARMS	Not FARMS
Z		0.0502^{***}	0.0726^{***}	0.0532^{***}	0.0638^{***}
		(0.0128)	(0.0191)	(0.0126)	(0.0208)
Ratio wrt	Full FS	.8137	1.1765	.8617	1.0341
Ν		24,035	24,161	25,583	22,613
Panel 2:	Race				
		Black	Hispanic	White	Asian
Z		0.0620***	0.0389**	0.0582^{***}	0.1320^{**}
		(0.0144)	(0.0182)	(0.0193)	(0.0653)
Ratio wrt	Full FS	1.0041	.6303	.9432	2.1393
Ν		24,100	5,795	14,861	1,175
Panel 3:	Quartile	s of Math	Achievem	ent	
		1st Q	2nd Q	3rd Q	$4 \mathrm{th} \ \mathrm{Q}$
Z		0.0396***	0.0496***	0.0323***	0.1052^{***}
		(0.0126)	(0.0132)	(0.0111)	(0.0303)
Ratio wrt	Full FS	.6419	.8036	.5243	1.7045
Ν		12,081	10,727	$13,\!332$	$12,\!056$

Liu, Conrad, Blazar

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 February 16, 2024

Complier Analysis and Heterogeneity for CS Majors

		· · · · · · · · · · · · · · · · · · ·	୬୯୯
Liu, Conrad, Blazar	University of Maryland	February 16, 2024	22 / 27

Complier Analysis and Heterogeneity for CS Majors

• Male, students not eligible for free or reduced price meals, Asian, and higher-achieving students are more likely to take HQ CS when offered the opportunity compared to their peers

Complier Analysis and Heterogeneity for CS Majors

- Male, students not eligible for free or reduced price meals, Asian, and higher-achieving students are more likely to take HQ CS when offered the opportunity compared to their peers
- Inconsistent heterogeneity comparing first-year CS major vs. CS BA degree receipt
 - Positive, large, and significant effects for traditionally overrepresented or higher-achieving students (e.g., 12.6 pp for white student but null result for Black students)
 - underrepresented subgroups and lower-achieving students benefit more on CS BA receipt (e.g., 30% bigger for Black students compared to white students, with both coefficients significant)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Heterogeneity: CS Majors

Panel 2: Race

	Black	Hispanic	White	Asian
Enroll and CS	0.0908	0.0264	0.1260^{**}	0.3118
	(0.0607)	(0.1310)	(0.0510)	(0.2685)
F-stat	15.9496	5.3779	8.8700	4.1392
Ν	24,100	5,795	14,861	1,175
Persist and CS	0.0821	0.0165	0.1651^{***}	0.4532
	(0.0619)	(0.2139)	(0.0466)	(0.3076)
F-stat	16.2913	5.7607	8.4297	4.1839
Ν	24,623	5,854	15,183	1,205
CS BA in 4 Years	0.0709^{**}	0.0532	0.0557^{*}	0.1172
	(0.0315)	(0.0713)	(0.0324)	(0.1237)
F-stat	11.9692	9.0688	10.1801	5.8367
Ν	21,677	5,276	$13,\!648$	1,108

Results: Earnings

	(1)	(2)	(3)	(4)
Panel 1	1: Employment	and Log Earnings	s for Full Sample	
	Employed at 23	Employed at 24	Employed at 25	Earnings at 24
RF	0.0001	0.0263**	0.0295**	0.0802**
	(0.0103)	(0.0100)	(0.0117)	(0.0365)
IV	0.0021	0.9603	1.1505	3.1215
	(0.2337)	(0.5844)	(0.7879)	(2.0772)
F-stat	9.8193	8.7282	4.5333	6.5259
Panel 2	2: Log Earnings	at 24 by Gender	and Socioecono	mic Status
	Females	Males	FARMS	Not FARMS
RF	0.0999*	0.0580	0.1409^{***}	-0.0079
	(0.0580)	(0.0510)	(0.0508)	(0.0455)
IV	5.0463	1.8333	5.0519	-0.3526
	(4.3223)	(1.7939)	(3.2892)	(1.9501)
F-stat	3.5764	7.5234	4.242	6.8144
Ν	10,777	9,475	10,532	9,720
Panel 3	3: Log Earnings	at 24 by Race		
	Black	Hispanic	White	Asian
RF	0.1203^{**}	-0.0957	0.0115	-0.1147
	(0.0501)	(0.1097)	(0.0505)	(0.2222)
IV	3.4022	-43.6498	0.5863	-1.9591
	(2.3983)	(103.4302)	(2.5920)	(3.6836)
F-stat	4.2231	.1907	3.5624	1.6394
Ν	10,449	1,572	6,742	414
Panel 4	4: Log Earnings	at 24 by Quartile	es of Math Achie	evement
	1st Q	2nd Q	3rd Q	4th Q
RF	0.0514	0.0809	0.0605	0.1184^*
	(0.0734)	(0.0614)	(0.0714)	(0.0660)
IV	2.0740	3.2961	4.3554	3.5933
	(3.5059)	(2.8401)	(6.1913)	(2.4497)
F-stat	2.3709	4.1064	3.2505	5.6907
Ν	5,072	5,072	5,045	5,063

Table 8: HQ CS Effects on Employment and Log Earnings

문 문 문

Discussion

- This paper finds that taking secondary HQ CS increases the likelihood of majoring in CS in the first- and second-year of college and receiving a CS degree
- Positive effects on early career labor market outcomes
- Substantial heterogeneity
 - Traditionally underrepresented groups, including female, low-SES, and Black students show stronger benefits on employment and earnings
 - However, their take-up rates of HQ CS are lower than their peers
- Policy implications:
 - "CS for All" initiatives are promising in increasing the supply of CS majors
 - More efforts to enhance underrepresented groups' participation in CS courses
- Future research:
 - CS teacher workforce
 - Explore why take-up rates are low for underrepresented groups and potential solutions

Thank You! Jing Liu jliu28@umd.edu

	~		
	onrad	- 8	lazar.
	COLLAG		

イロト イヨト イヨト イヨト

Appendix: Balance Test

	(1)	(2)	(3)
	TWFE	${\rm CS}~2021$	SA 2021
Female	-0.0118	-0.0243	-0.0300**
	(0.0103)	(0.0162)	(0.0138)
Free/Reduced Lunch	-0.0092	0.0283	0.0051
	(0.0129)	(0.0210)	(0.0212)
Black	-0.0144	0.0255	-0.0160
	(0.0140)	(0.0305)	(0.0206)
Hispanic	0.0180	0.0205	0.0259
	(0.0154)	(0.0217)	(0.0196)
White	-0.0020	-0.0220	0.0057
	(0.0100)	(0.0223)	(0.0152)
Asian	-0.0001	-0.0061	-0.0018
	(0.0033)	(0.0054)	(0.0039)
Multiracial	0.0017	-0.0098	-0.0062
	(0.0038)	(0.0074)	(0.0070)
English Learner	0.0092**	0.0060	0.0090**
	(0.0044)	(0.0051)	(0.0039)
Special Education	-0.0204**	-0.0140	-0.0284**
	(0.0097)	(0.0152)	(0.0141)
Math Score	0.0126	-0.0598	0.0363
	(0.0398)	(0.0615)	(0.0430)
ELA Score	0.0150	-0.0663	0.0240
	(0.0246)	(0.0572)	(0.0336)
Science Score	0.0604	-0.0661	0.0256
	(0.0385)	(0.0504)	(0.0477)
Joint Test P-Value	.1216	. ,	. ,
Ν	50,506	50,506	50,506
N Schools	57	57	57

 Table A8: Balance Tests for Changes in Observable Characteristics

Liu, Conrad, Blazar

University of Maryland

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 February 16, 2024