Causal Inference in Education Policy Research

MLDS Research Series

December 6, 2013

Dr. Laura Stapleton

Mr. Dan McNeish, Ms. Xiulin Mao

Measurement, Statistics and Evaluation Program

College of Education

University of Maryland, College Park
Outline

Introduction and Context
Causal Inference, the Counterfactual, and the “Fundamental Problem of Causal Inference”
Three Approaches to Evaluate Cause in Observational Studies
 - Condition on Covariates
 - Instrumental Variable Estimation
 - Regression Discontinuity Analysis
Recommendations
References for More Information
Data, too often, are turned into “information” that can be misleading

“…many college students who take developmental education classes… fail to graduate. Only 28% of two-year college students who took at least one developmental course earned a degree or certificate within 8.5 years, compared to 43% of non-remedial students…” (USA Today, July 25, 2013)

“Financial aid can make or break a college education…any student headed to study at a private school with financial gaps over $3,000 would be at significant risk of not graduating.” (www.bottomline.org)
“employment and finances [are seen] as the main reasons for departure…nearly 40 percent of students who worked full time while enrolled dropped out within three years, compared to 19 percent of students who worked part time and 13 percent who did not work.” (Demos, 2011)

“The evidence is clear: Undergraduates enrolled full-time — specifically, 30 or more credits completed in their first year — are more likely to graduate on time than students who complete fewer credits per year.” (Complete College America, 2013)
These examples focus on bivariate relations:
- Taking a remedial course and earning a degree/certificate
- Having unmet financial need and graduating
- Working and dropping out of college
- Enrollment in 30 credits and time-to-degree

“Correlation does not imply causation”

…what can we do instead?

First, we need an understanding of the concept of causal inference and the counterfactual
In order to attribute “cause” -- or measure the Treatment Effect of a given “treatment” -- we need to see the person under both conditions.

\[
\text{no college} \quad \text{college}
\]

Treatment effect = \(? - ? \)

“Fundamental Problem of Causal Inference” – we never obtain the counterfactual in social science.

If we can assume that treatment assignment is unrelated to potential outcomes, then the Average Treatment Effect gives us an estimate of the Treatment Effect.
We can obtain an unbiased estimate of the Average Treatment Effect (ATE) with a well-designed random assignment study.
However, with observational studies, Treatment Assignment tends to be related to potential outcomes (it is *endogenous*).
Aug 27, 2013, there was a great piece by Dylan Matthews in the Washington Post: *The Tuition is Too Damn High: Part II Why College is Still Worth It*

We see a correlation…

We may be tempted to conclude…

A different reason for the correlation…
We would like to estimate the treatment effect \((TE) \)…

But with observational studies, there is also a relation \((r) \) between the treatment assignment and the potential outcome…

If we naively estimate the effect of \(T \) on \(Y \), then our estimate is biased… it will be \(TE + r \)
Three approaches we will introduce today:
- conditioning on covariates
- instrumental variable estimator
- regression discontinuity estimator

Each of these approaches differ on:
- “who” is included in the analysis
- the required type of auxiliary information / data
- statistical (and conceptual) assumptions
Conditioning on Covariates
Conditioning on Covariates

We can address selection bias in our observed data by using other data that we know about the participants.

Using the other data (which we call “covariates”), we can:

- adjust for differences in a multiple regression framework
- stratify people by levels of the covariates and examine the effect of treatment within strata
- match on the covariates to create groups that only differ on the treatment variable
Controlling for Covariates Using Multiple Regression

Assumptions:
1) Covariates have eliminated the relation between College and Income residual (ignorability)
2) Correct functional form of relation of covariates and outcome
3) Relation of College and Income same at all levels of covariates
4) Homoscedastic spread of observations over the outcome/covariate space

Provides us with the “ATE” – the average treatment effect if all people were exposed to the treatment
Controlling for Covariates Using Multiple Regression

- What if all high GPA and high SES students went to college and low GPA and low SES students did not go to college?
- We would be comparing completely different groups – no overlap (referred to as “common support”) – but we would not “see” it when we run this regression analysis.
- Additionally, we never know whether we have met assumptions about functional form (we cannot separate the evaluation of it from possible treatment effects given that both are included in the model simultaneously).
Controlling for Covariates Using Stratification

<table>
<thead>
<tr>
<th>High GPA, High SES</th>
<th>High GPA, Medium SES</th>
<th>High GPA, Low SES</th>
<th>Low GPA, Low SES</th>
</tr>
</thead>
<tbody>
<tr>
<td>🧑‍🚀 🧑‍🚀</td>
<td>🧑‍🚀 🧑‍🚀</td>
<td>🧑‍🚀 🧑‍🚀</td>
<td>🧑‍🚀 🧑‍🚀</td>
</tr>
<tr>
<td>🧑‍🚀 🧑‍🚀</td>
<td>🧑‍🚀 🧑‍🚀</td>
<td>🧑‍🚀 🧑‍🚀</td>
<td>🧑‍🚀 🧑‍🚀</td>
</tr>
<tr>
<td>🧑‍🚀 🧑‍🚀</td>
<td>🧑‍🚀 🧑‍🚀</td>
<td>🧑‍🚀 🧑‍🚀</td>
<td>🧑‍🚀 🧑‍🚀</td>
</tr>
<tr>
<td>🧑‍🚀 🧑‍🚀</td>
<td>🧑‍🚀 🧑‍🚀</td>
<td>🧑‍🚀 🧑‍🚀</td>
<td>🧑‍🚀 🧑‍🚀</td>
</tr>
</tbody>
</table>
Controlling for Covariates Using Stratification

The treatment effect estimates are combined across the strata, weighted by number in treatment in each stratum.

This approach removes the requirement that we know the functional form of the relation between covariates and outcome.

Provides us with the ATT – the average treatment effect on the treated.

- High GPA, High SES
- High GPA, Medium SES
- High GPA, Low SES
- Low GPA, Low SES
What if we have more than two variables that theoretically determine membership into treatment groups?

Estimate a **propensity** to be in the treatment group:

- Sibling
- College
- HS GPA
- Parent
- SES
- Motivation

Using the observed membership, we create a prediction equation to determine a person’s probability of being in treatment given covariates.

Each person then receives a propensity score (ranging from 0 to 1).

This propensity score estimation process is done **without** knowledge of the value on the outcome.
Controlling for Covariates Using Propensity Score Stratification

The treatment effect estimates are averaged across the strata.

Provides us with the ATT – the average treatment effect on the treated.

- Highest Propensity
 - College \rightarrow Income
 - TE

- Next Highest Propensity
 - College \rightarrow Income
 - TE

- Middle Propensity
 - College \rightarrow Income
 - TE

- Lowest Propensity
 - College \rightarrow Income
 - TE
For each treatment person, a match is found in the control group based on propensity score.
The mean on the outcome for the treated group is then compared to the mean of the matched control group.

Unmatched control group members are not included in any analysis.

For each treatment person, a match is found in the control group based on propensity score.

The mean on the outcome for the treated group is then compared to the mean of the matched control group.

Provides us with the ATT – the average treatment effect on the treated.
Controlling for Covariates Using Propensity Score Matching

What if there is minimal overlap?

Any comparison between the groups may be problematic

May need to compare only those persons with reasonable matches and confine generalization to just that population
Instrumental Variable Estimator
We may not have access to the many covariates needed to “equate” our treatment and control groups.

It may be possible to locate and “carve out” an “exogenous” part of the variability in treatment assignment.

We then use this “exogenous” part only to estimate the causal effect.

The variable that is used to carve out exogeneity is referred to as an “instrumental” variable.
We would like to find the unbiased treatment effect estimate…

We can locate an instrumental variable to estimate…

Assumption:
There is no direct relation between the instrumental variable and the outcome

True instrumental variables are difficult to find

This analysis provides the local average treatment effect (LATE), localized just to that part of the treatment variable that is “sensitive to” differences in the instrumental variable

(that part of college that is a function of differences in geographic location)
Regression Discontinuity Estimator
Sometimes in education, there is a “natural experiment” with what is referred to as a “discontinuity design”

- Underlying continuum along which people are arrayed (called the “forcing” variable)
- An exogenously determined cut-point on this continuum divides participants into levels of a treatment

Goal is to limit the analysis to just those observations “at the cut-off” of this forcing variable

- Compare the outcome for those just below the cut-off to those just above the cut-off
Regression Discontinuity Estimator

The cut-point is determined and those just above and just below the cut-point are compared.

The size of the comparison “bandwidth” is crucial.

As the “bandwidth” is increased, the functional form between the forcing variable and outcome should be correctly specified.

The treatment effect is the difference in predicted values at the location of the cut-point.

This analysis provides us with an estimate of the effect of the POLICY based on the cut-point and not of actually being exposed to the treatment.
Recommendations and Issues for MLDS Center to Consider

- Use an appropriate analytic approach for the research or policy question
 - try not to take a quick or easy road
 - inform our various audiences over time
 - be leaders in analytic rigor
- Build models based on appropriate theory
 - need to partner with experts on each issue
 - examples: early education/childcare, financial aid, labor migration, etc.
Data. These analytic techniques require that we need to capture those data elements that would allow us to:

- make “matches”
- identify instrumental variables
- use a forcing variable in regression discontinuity
- these variables may include those not typically considered of interest in analyses
Recommendations and Issues for MLDS Center to Consider

- Be responsive and efficient
 - Policy decisions are often made quickly
 - We need to be similarly quick (yet rigorous…a hard balancing act)
- Learn how to tell a story
 - These analyses can be very intricate -- our policy briefs need to mask that intricacy

“Any fool can make something complicated. It takes a genius to make it simple.”
(Woody Guthrie)
References for More Information

Methodological resources:

Empirical examples of methods:
My stomach hurts
Questions?

(Lstaplet@umd.edu)