

Applying Longitudinal Data Analysis Methods to Examine Poverty as a Predictor of Wage Trajectories

Dr. Bess Rose MLDS Center Research Series April 4, 2019 mldscenter.maryland.gov



### Overview

- Many MLDS research questions are essentially questions about change
- We can understand change using multilevel growth models
- Using growth models to understand wage data from the MLDS
- Discussion



# Many MLDS research questions are essentially questions about change



# Many MLDS research questions are essentially questions about change

- What are the workforce outcomes of Maryland high school non-completers?
- What are the workforce outcomes for Maryland students who earn a high school diploma but do not transition to postsecondary education or training?
- Are exiters of Maryland colleges successful in the workforce?

⇒ How do individuals' wages change upon attainment of high school and college degrees?



# We can understand change using multilevel growth models



# Modeling change using multilevel growth or repeated measures models

- What is the basic shape of the trajectory?
  - What is the average starting point (at time 0)?
    - This is called the intercept
  - What is the average rate of change over time (for each unit of time)?
    - This is called the slope
  - Recall Y = mX + B
    - Outcome = slope(time) + intercept
- How does that trajectory change based on
  - Events such as degree attainment
  - Demographic characteristics such as race and gender



#### Anthony Bryk, SREE Summer 2016 HLM Short Course https://www.sree.org/video/



At level-2 (between persons): Model <u>inter-individual differences in change</u>, which describe how the features of the change trajectories vary across people



*Level-2 model for level-1 slopes*  $\pi_{1i} = \gamma_{10} + \gamma_{11}MALE_i + \zeta_{1i}$ 



Judith Singer, Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence



What might the wage trajectory look like for someone who got a GED 3 years after labor force entry (post dropout)?





What might the wage trajectory look like for someone who got a GED 3 years after labor force entry (post dropout)?



Slides adapted from Singer & Willett, gseacademic.harvard.edu/alda/Presentations



# Using growth models to understand wage data from the MLDS



# Using growth models with MLDS

Wage data

- Unit of time is quarters
- For this example, set starting point at 4 quarters (Qs) prior to leaving high school (HS)

Research questions:

- What is the average quarterly wage 4 Qs prior to leaving HS? How much do wages change over time, on average?
- How do wage trajectories change upon attainment of high school and college degrees?
- How do wage trajectories vary by race, gender, and poverty experiences?



## **Description of sample**

- Poverty study cohort: students in 6th grade in 2007-2008 who did not transfer out of MD public schools
- Repeated measures analysis: members of cohort with at least one quarter of wage data (n=43,607)
- 7 quarters of data on average
- 51% female, 49% male
- 35% Black, 65% not Black
- 52% never FARMS, 29% sometimes FARMS, 19% always FARMS





#### How do wage trajectories change upon attainment of high school and college degrees?

coef Log wages se 0.007 Intercept 6.522\*\*\* Slope 0.054\*\*\* 0.002 Immediate change with HS degree 0.159\*\*\* 0.007 0.053\*\*\* Slope change with HS degree 0.002 Immediate change with college enrollment -0.044\*\*\* 0.006 -0.060\*\*\* Slope change with college enrollment 0.002 Immediate change with college degree 0.068\*0.034 0.052\*\*\* Slope change with college degree 0.015





# Summary of overall degree effects

- Overall, attainment of a high school degree is associated with an immediate 16% boost in wages and a 5% increase in wage change over time
- Enrolling in college is associated with an immediate 4% loss in wages and a 6% decrease in wage change over time
- Attainment of a college degree is associated with an additional immediate 7% boost in wages and an additional 5% increase in wage change over time



How do wage trajectories vary by race, gender, and poverty experiences?

- Blacks have starting wages that are 8% lower than whites, controlling for gender and poverty, and 3% smaller increases in wages over time
- Upon attaining a HS degree, Blacks have an immediate boost in wages that is 5% larger than the boost for similar whites, and a 2% larger increase over time
- The benefit of a college degree is no different for Blacks compared to whites who are similar in terms of gender and poverty experiences



# How do wage trajectories vary by race, gender, and poverty experiences?

- Females have starting wages that are about the same as males, controlling for race and poverty, but 1% smaller increases in wages over time
- Upon attaining a HS degree, females have an immediate boost in wages that is 5% smaller than similar males, and a 1% smaller increase over time
- The benefit of a college degree is no different for females compared to males who are similar in terms of race and poverty experiences



# How do wage trajectories vary by race, gender, and poverty experiences?

- People who experienced poverty in MS-HS have starting wages that are 10% higher than similar students who never experienced poverty, but the same increases in wages over time
- Upon attaining a HS degree, students who experienced poverty have an immediate boost in wages that is about 8% larger than similar students who were never poor
- Upon college degree attainment, students who were intermittently poor have 11% larger increases in wages over time than similar students who were never poor



Prototypical predicted wage trajectories for the poverty study cohort





### Summary

- Both high school and college degrees are associated with significant immediate boosts to wages and subsequent quarterly increases in wages
- Race, gender, and poverty account for substantial variation in the impact of high school and college degrees on wage patterns over time
- The effects of educational and workforce policies and interventions should be evaluated within this context



### Future Research

- Consider additional time-varying and non-time-varying variables
  - USM/CTE HS program completion
  - College enrollment patterns and transfers (2 year/4 year)
  - Industry employed
  - County variation
- What are the roles of schools/colleges?
  - Students attending the same school may have more similar outcomes to one another than to students in other schools
  - Could add school as level 3 (students nested in schools); multiple membership to account for all schools attended
  - Could add school characteristics variables



### **Pros and Cons**

Cons:

- Initial time and effort for setting up data
- Need a theory on how to code time and what is important about time
- Resources needed to run models

Pros:

- Takes advantage of full information about everyone and their characteristics and wages
- More accurately reflects reality



### Discussion

What educational and workforce policies could be evaluated against this backdrop of wage patterns over time?

What MLDS data might be relevant to these analyses?



# Additional resources

Judith Singer & John Willett, *Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence* (2003) <u>http://gseacademic.harvard.edu/alda/</u>

Stephen Raudenbush & Anthony Bryk, SREE Summer 2016 Hierarchical Linear Models Short Course (Day 3) <u>https://www.sree.org/video/index.php?item=2016HL</u> <u>MDay3Part1&new=Yes</u>



#### Extra slides



# Variation by gender

| Change in parameters for females            | coef      | se    |
|---------------------------------------------|-----------|-------|
| Change in intercept                         | 0.009     | 0.013 |
| Change in slope                             | -0.008*   | 0.004 |
| Change in immediate change with HS degree   | -0.052*** | 0.013 |
| Change in slope change with HS degree       | -0.012**  | 0.004 |
| Change in imm. change with college enroll.  | 0.006     | 0.012 |
| Change in slope change with college enroll. | 0.021***  | 0.003 |
| Change in imm. change with college degree   | -0.085    | 0.070 |
| Change in slope change with college degree  | -0.012    | 0.043 |



# Variation by race

| Change in parameters for Blacks             | coef      | se    |
|---------------------------------------------|-----------|-------|
| Change in intercept                         | -0.075*** | 0.015 |
| Change in slope                             | -0.034*** | 0.004 |
| Change in immediate change with HS degree   | 0.047**   | 0.015 |
| Change in slope change with HS degree       | 0.021***  | 0.004 |
| Change in imm. change with college enroll.  | -0.040**  | 0.014 |
| Change in slope change with college enroll. | 0.013***  | 0.004 |
| Change in imm. change with college degree   | 0.060     | 0.113 |
| Change in slope change with college degree  | -0.051    | 0.053 |



# Variation by poverty duration

| Change in parameters for sometimes FARMS    | coef     | se    |
|---------------------------------------------|----------|-------|
| Change in intercept                         | 0.099*** | 0.016 |
| Change in slope                             | 0.006    | 0.004 |
| Change in immediate change with HS degree   | 0.069*** | 0.016 |
| Change in slope change with HS degree       | -0.011*  | 0.005 |
| Change in imm. change with college enroll.  | -0.011   | 0.015 |
| Change in slope change with college enroll. | 0.023*** | 0.004 |
| Change in imm. change with college degree   | -0.120   | 0.096 |
| Change in slope change with college degree  | 0.107*   | 0.053 |



# Variation by poverty duration

| Change in parameters for always FARMS       | coef     | se    |
|---------------------------------------------|----------|-------|
| Change in intercept                         | 0.105*** | 0.019 |
| Change in slope                             | 0.002    | 0.005 |
| Change in immediate change with HS degree   | 0.088*** | 0.019 |
| Change in slope change with HS degree       | -0.010   | 0.006 |
| Change in imm. change with college enroll.  | 0.015    | 0.018 |
| Change in slope change with college enroll. | 0.021*** | 0.005 |
| Change in imm. change with college degree   | 0.079    | 0.139 |
| Change in slope change with college degree  | 0.006    | 0.061 |