

Better Data • Informed Choices • Improved Results

MLDS Center Research Series

Applications of Data Science Methods to MLDS Data

Brennan Register, Patrick Sheehan, & Tracy Sweet

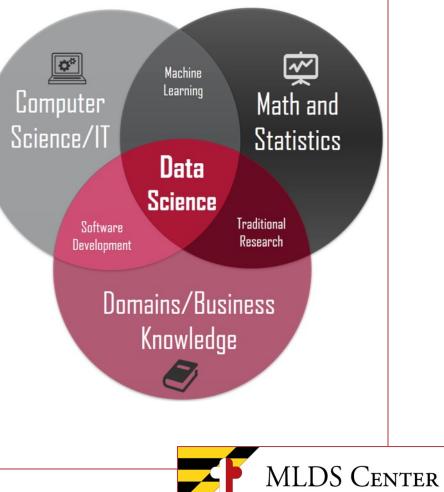
May 5, 2022

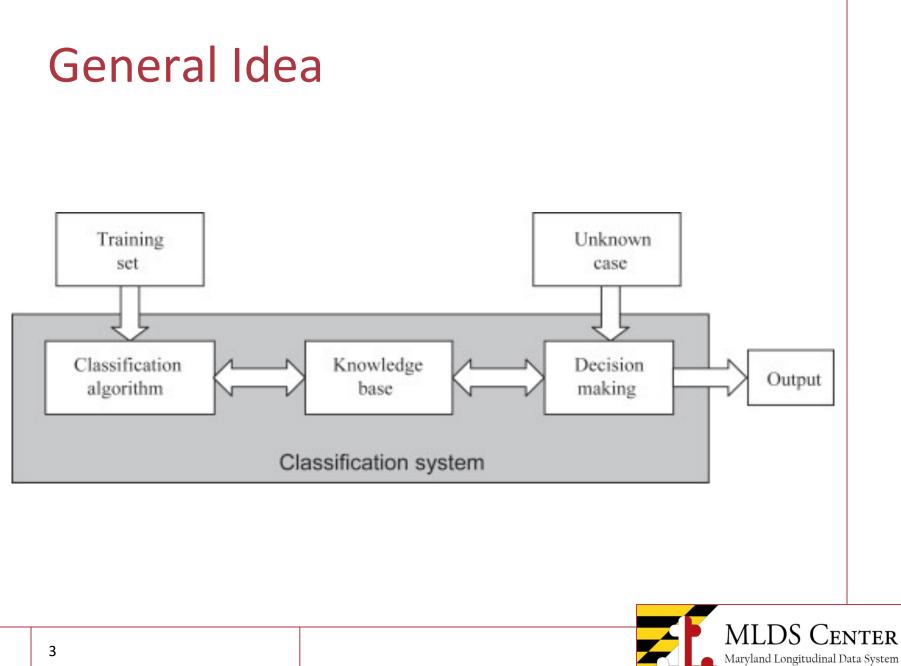
Outline

- Introduction to Common Data Science Methods
- Example with Simulated Data
- MLDS Application

Data Science & Machine Learning

- Data science is the intersection of computer science, statistics and a content area
- Machine Learning (ML) focuses on building computer algorithms that learn from data
- The algorithms are fine-tuned and then applied to data





Common ML Output Types

Regression

Predict numerical values (e.g. price of house)

Classification

One of n labels... (cat, dog, human)

Clustering

Most similar other examples (e.g. related products on Amazon)

Sequence Prediction

What comes next? "If you want something done _____, do it yourself"

Two Main Approaches

Supervised Learning

- Labeled datasets
 - Outcome Y
- p predictors X
- ➤ When Y is quantitative → regression problem
- ➤ When Y is categorical → classification problem

Unsupervised Learning

- Unlabeled datasets
 - No outcome variable
- Discover hidden patterns in data
- Three main tasks: clustering, association and dimensionality reduction

Simulated Data Example

- Predicting graduate school admissions given a set of student characteristics
- Sample of 500 students
- Classification problem
- Supervised Learning

Variables in Simulated Data

Admitted to Grad School (either 0 or 1)

Outcome

Predictors

- GRE Scores (out of 340)
- TOEFL Scores (out of 120)
- University Rating (out of 5)
- Statement of Purpose (out of 5)
- Letter of Recommendation Strength (out of 5)
- Undergraduate College GPA (out of 4)
- Research Experience (either 0 or 1)
- Male (either 0 or 1)

Snapshot of the Simulated Dataset

GRE.Score TOEFL.Score University.Rating SOP LOR CGPA Research Male Admit

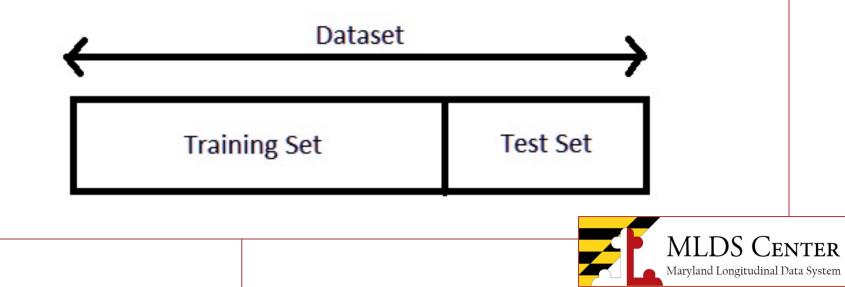
1	337	118	4 4.5 4.5 3.73	1	1	1
2	324	107	4 4.0 4.5 2.95	1	0	1
3	316	104	3 3.0 3.5 2.08	1	0	0
4	322	110	3 3.5 2.5 2.75	1	0	1
5	314	103	2 2.0 3.0 2.29	0	1	0
6	330	115	5 4.5 3.0 3.42	1	1	1

*note this is not real data

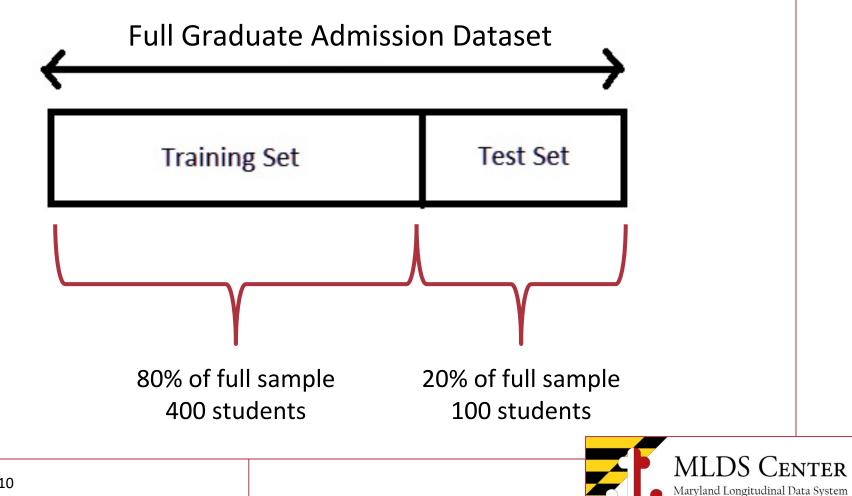
Training vs Testing

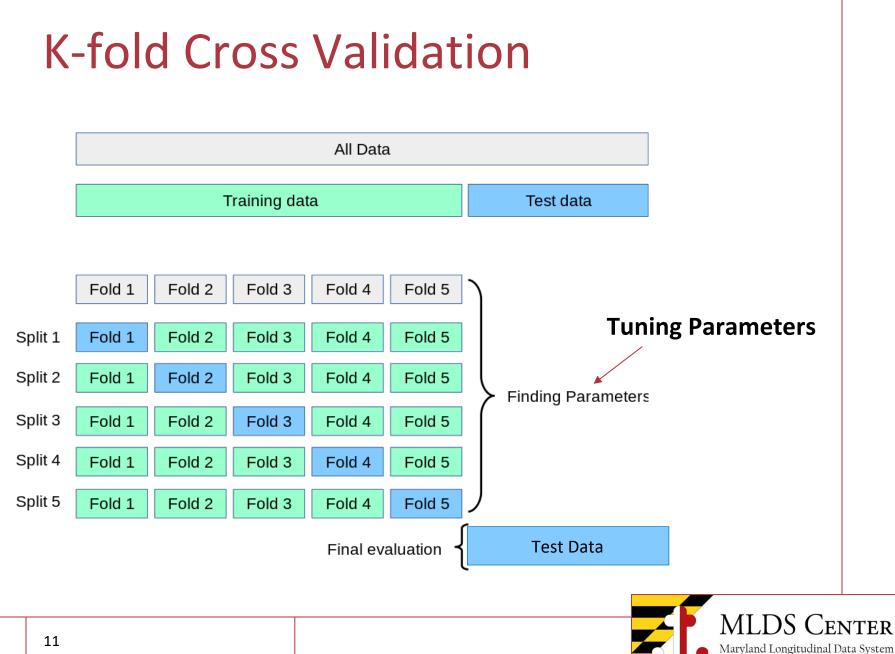
> **Training Set:** The sample of data used to fit the model

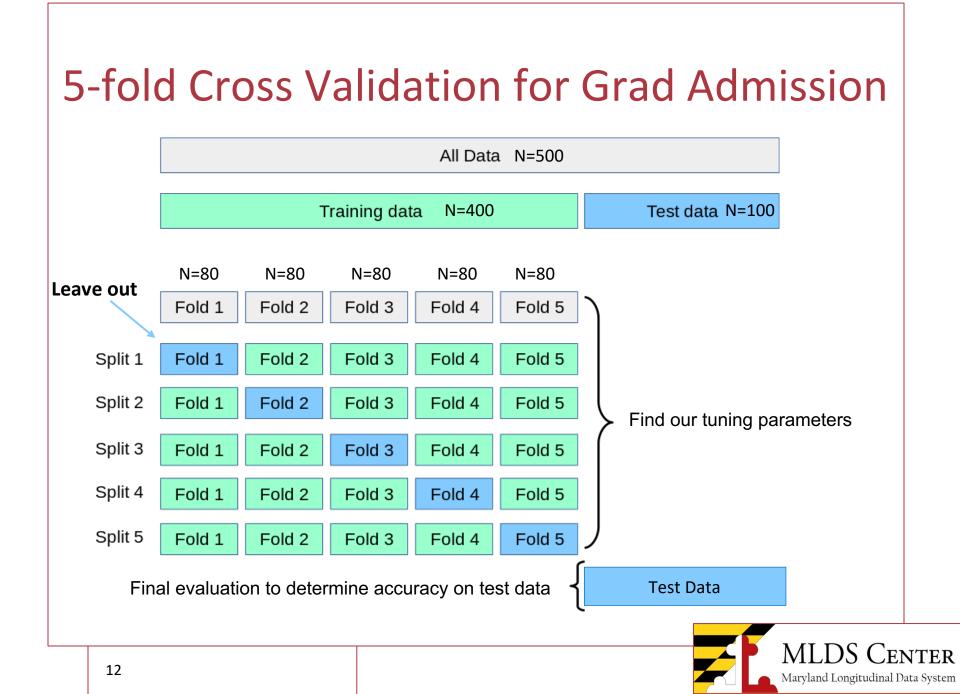
Testing Set: The sample of data used to provide an unbiased evaluation of a final model fit on the training dataset



Training and Testing Sets for Grad Admission

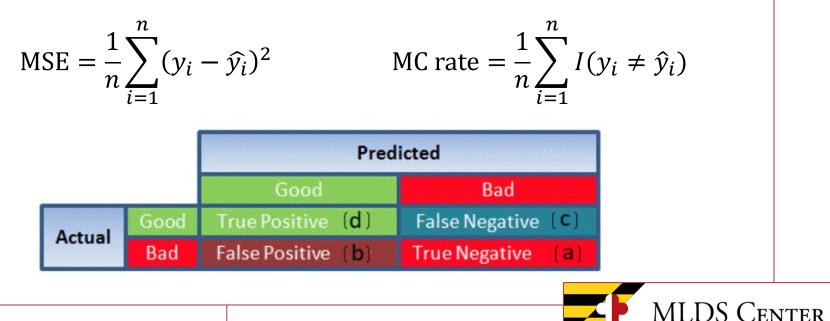






Model Evaluation

- Accuracy: a measure of how well the machine learning model performs
- Continuous Y: Mean Squared Error
- Categorical Y: Misclassification Rate



Example Confusion Matrix for Grad Admission

Random Forest

Confusio	n Matrix	Tru	ıth	
		Not Admitted	Admitted	
Prediction	Not Admitted	55	10	
Prediction	Admitted 5 30		30	

Accuracy:

(55 + 30) / 100 = 85%

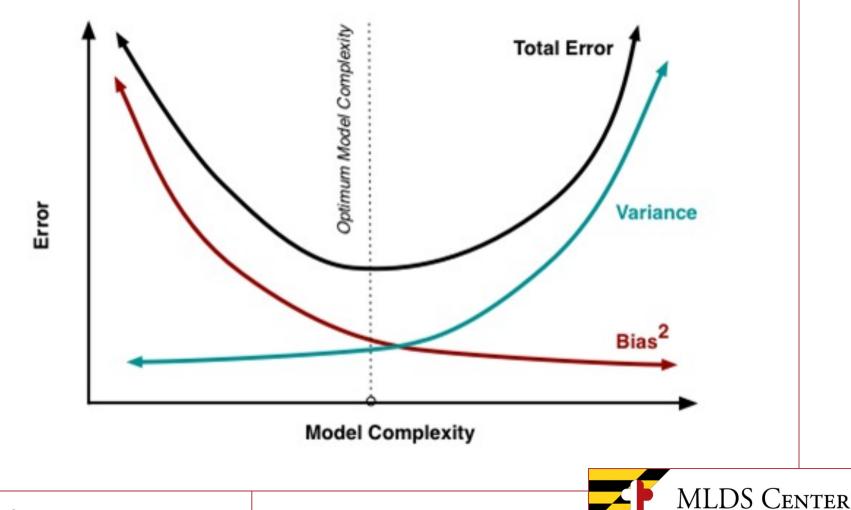
Bias - Variance Tradeoff

- Bias is the inability of a model to learn enough about the relationship between the predictors X and the response Y. It quantifies how much on an average the predicted values differ from the actual value
- Variance quantifies a model's tendency to learn too much about the relationship that's implied by the training dataset. It represents a model's lack of consistency across different datasets

total error = irreducible error + error due to bias + error due to variance,

reducible error

Bias - Variance Tradeoff

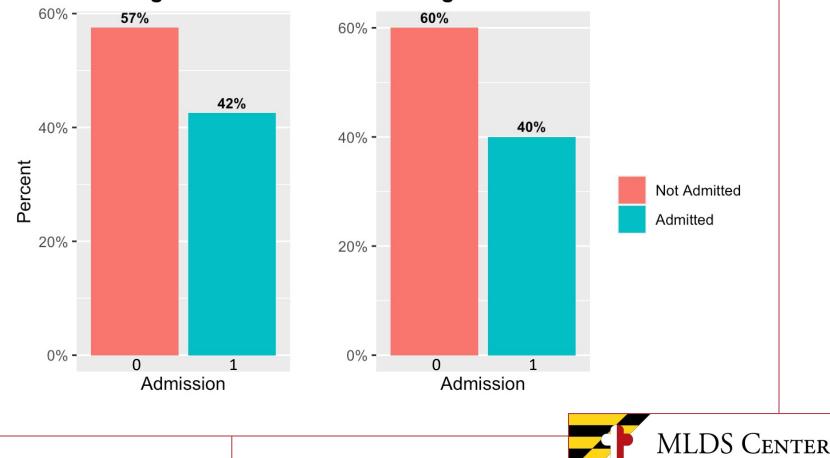


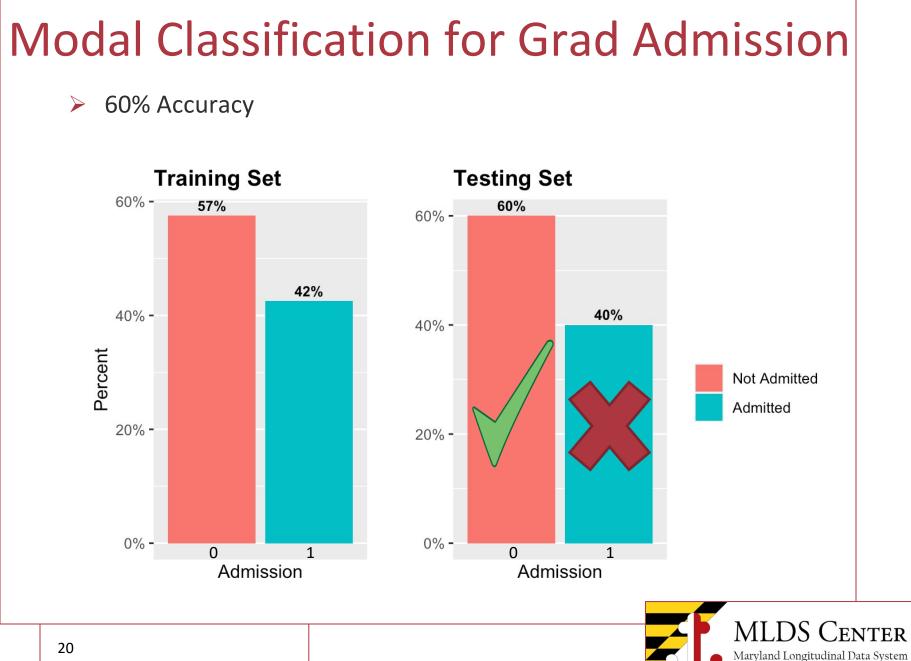
Some Common Methods

Machine Learning Algorithms

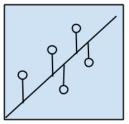
Characteristics	ML Algorithm	Tuning	
Without dimension reduction	Modal Classification Multiple Linear Regression Logistic regression k-Nearest Neighbor (kNN)	None None None Number of neighbors	
Dimension reduction with penalty	Lasso	Shrinkage/ penalty	
Tree based, non-linear relationship	Classification/Regression Trees Random forest	Tree depth/ pruning Number and depth of trees	
Non-linear decision surface	Support vector machine Neural network	Kernels Depth of neurons	
Ensemble of many algorithms	Super learner (SL)	Weights	
19		MLDS (

Majority Rule ^{60%} ^{57%} ^{60%} ^{60%} ^{60%} ^{60%}





Logistic Regression



Regression Algorithms

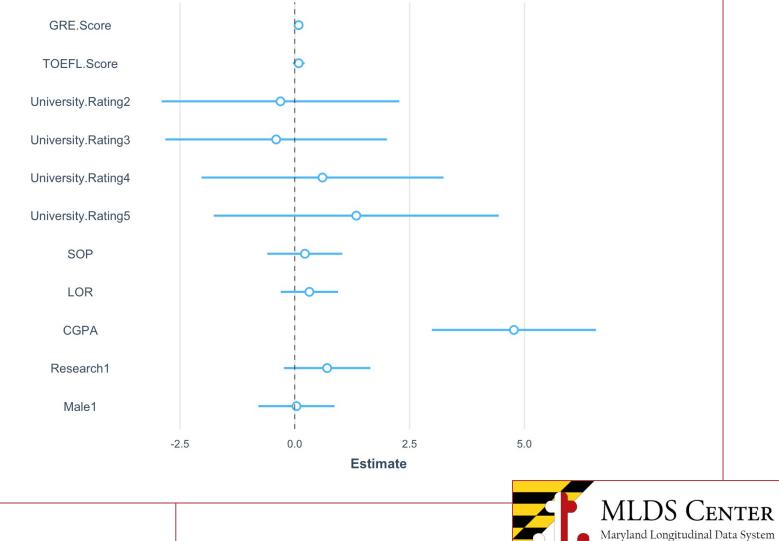
- The outcome of interest is a dichotomous variable
 - Predictions are made using the formula:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

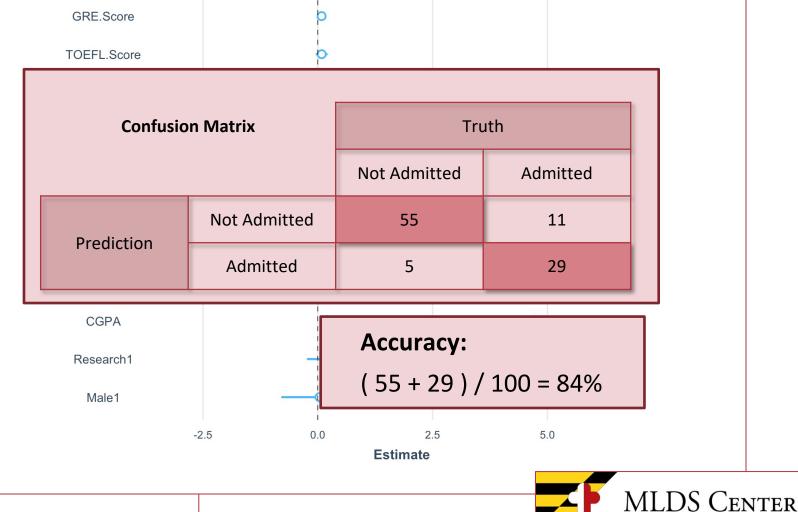
$$p(X) = \frac{c}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

- Can be generalized to more than two classes by using a linear function for each class
- A simple approach to supervised learning but assumes linearity (which often isn't the truth)
- Linear models are easy to interpret

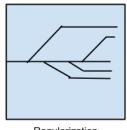
Logistic Regression for Grad Admission



Logistic Regression for Grad Admission

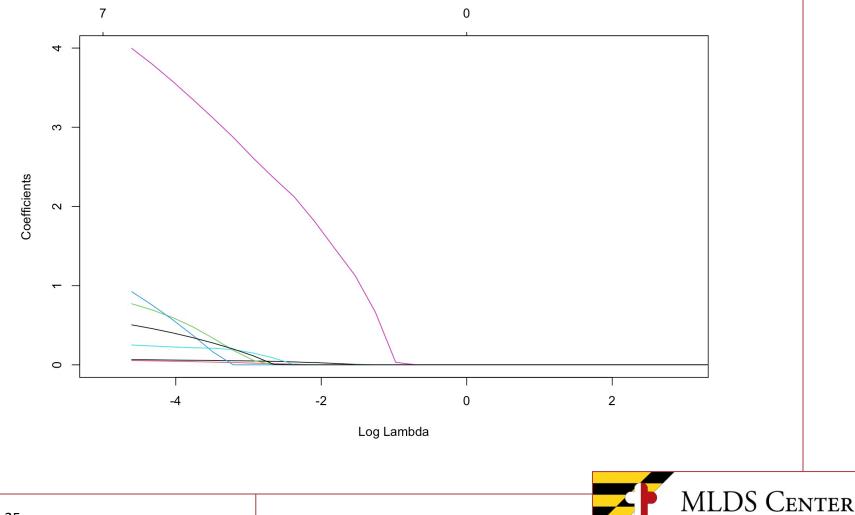


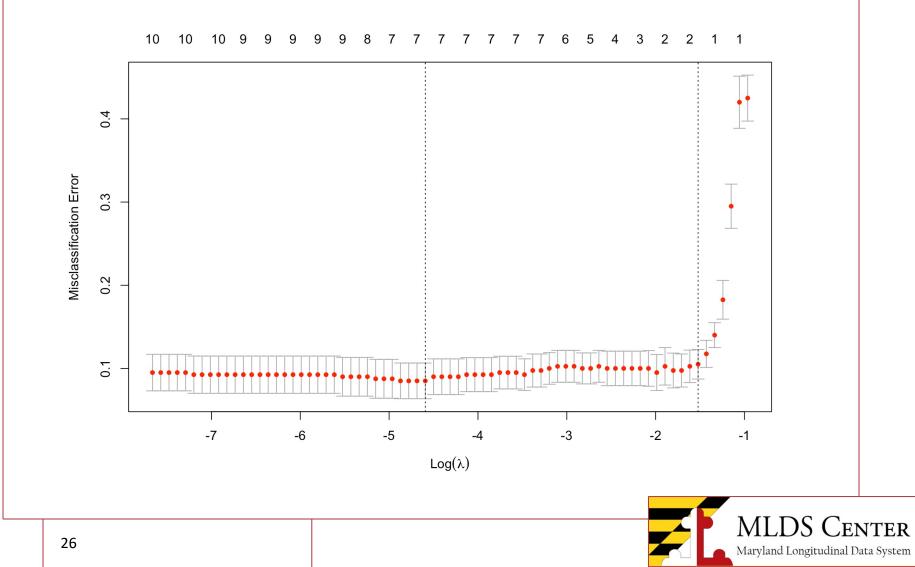
Lasso Regression

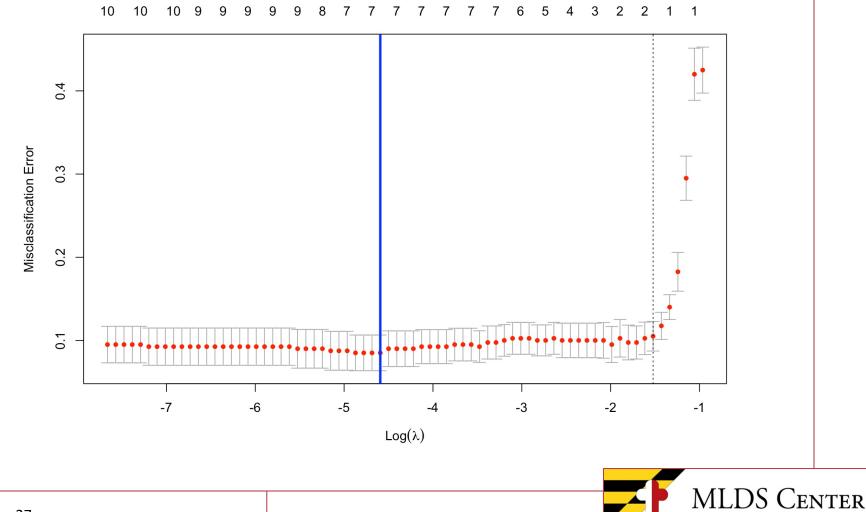


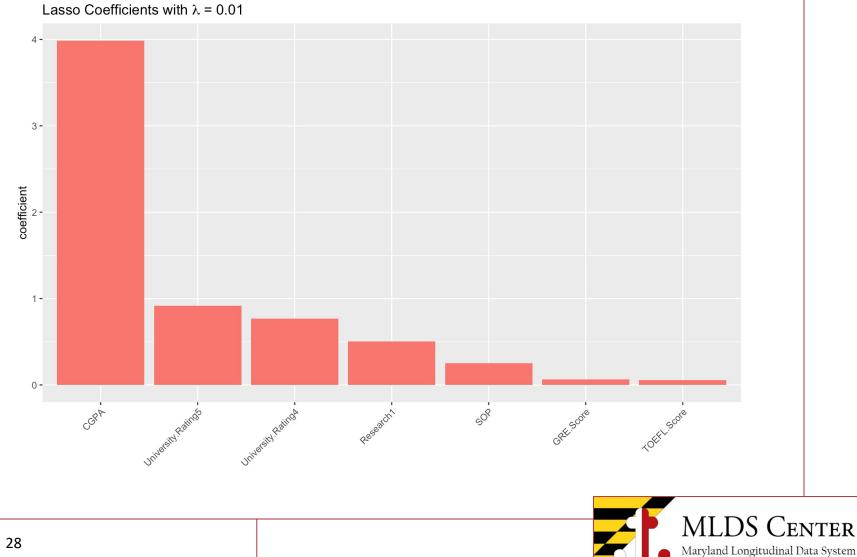
Regularization Algorithms

- Variable selection method that shrinks the coefficient estimates towards zero based on a penalty (tuning) parameter λ
- Selecting a good value of λ for the lasso is critical;
 cross-validation is again the method of choice
- Produces a model that can include only a subset of the predictor variables which reduces the model complexity and helps avoid over-fitting to the data

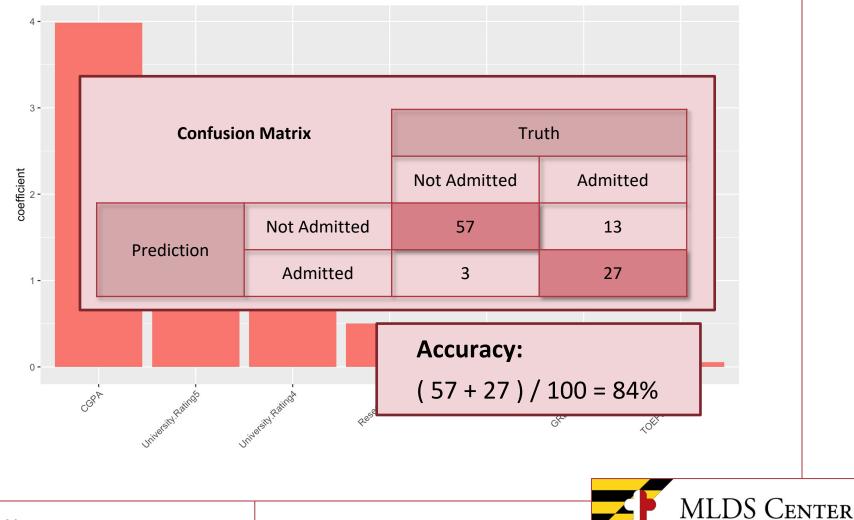




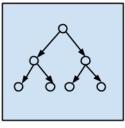




Lasso Coefficients with $\lambda = 0.01$

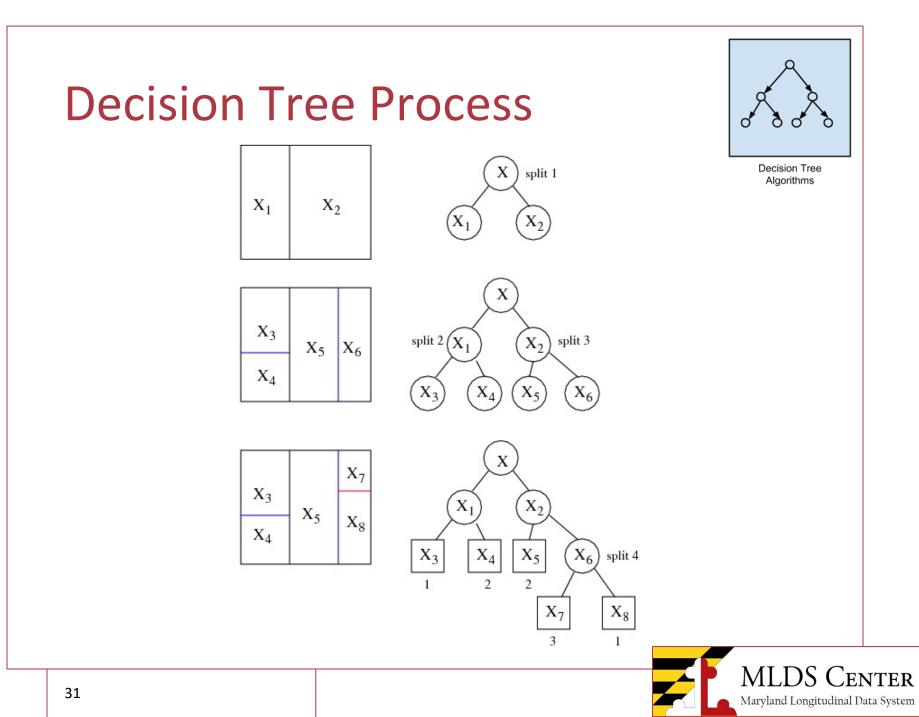


Decision Trees

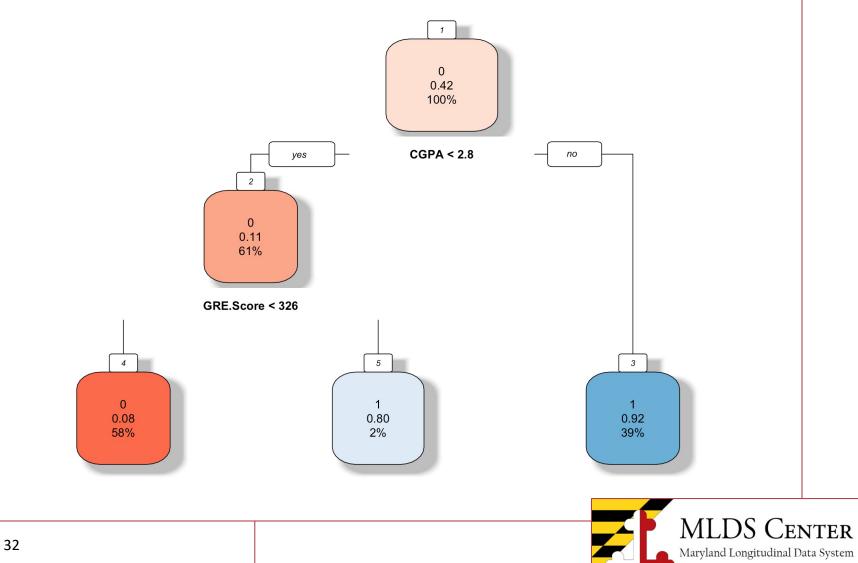


Decision Tree Algorithms

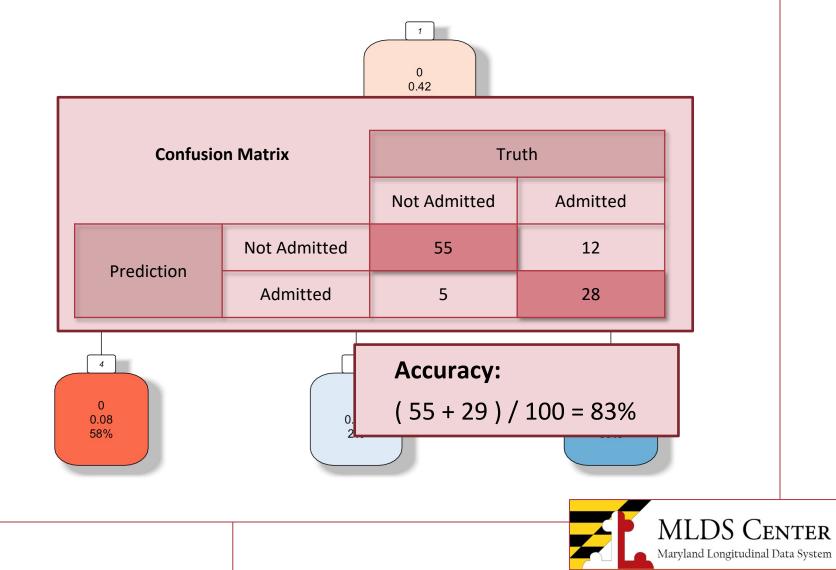
- Classification or Regression
- Nonparametric models built in the form of a tree structure by stratifying or segmenting the predictor space into several simple regions
- > Complexity (tuning) Parameter α
- Within each final node, the predicted value is either the modal value/class of the outcome (Classification) or the mean of the outcome variable for observations in the node (Regression)
- Easy to interpret



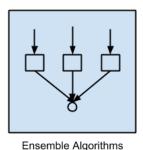
Decision Tree for Grad Admission



Decision Tree for Grad Admission

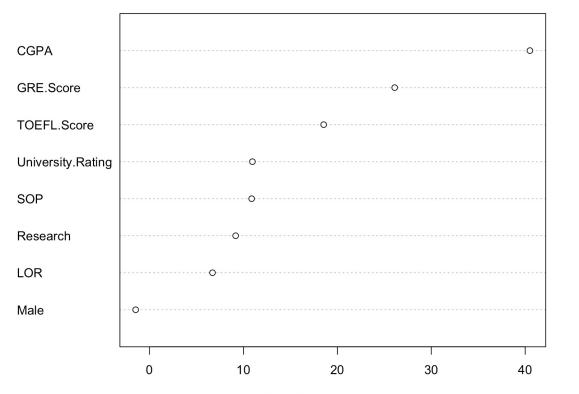


Random Forest



- Used for Classification or Regression
- An ensemble classifier which combines the results of many decision tree models built on bootstrapped samples using a random sample of the predictors at each split
 - > A selection of m predictors is taken at each split (typically $m \approx \sqrt{p}$)
- This process decorrelates the trees which reduces the variance
- Need to select the number of trees

Random Forest for Grad Admission



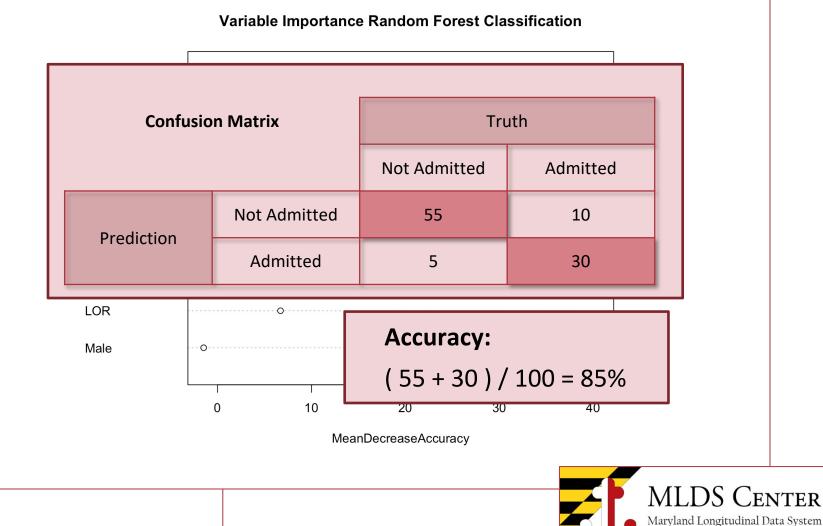
Variable Importance Random Forest Classification

MeanDecreaseAccuracy

MI

Center

Random Forest for Grad Admission



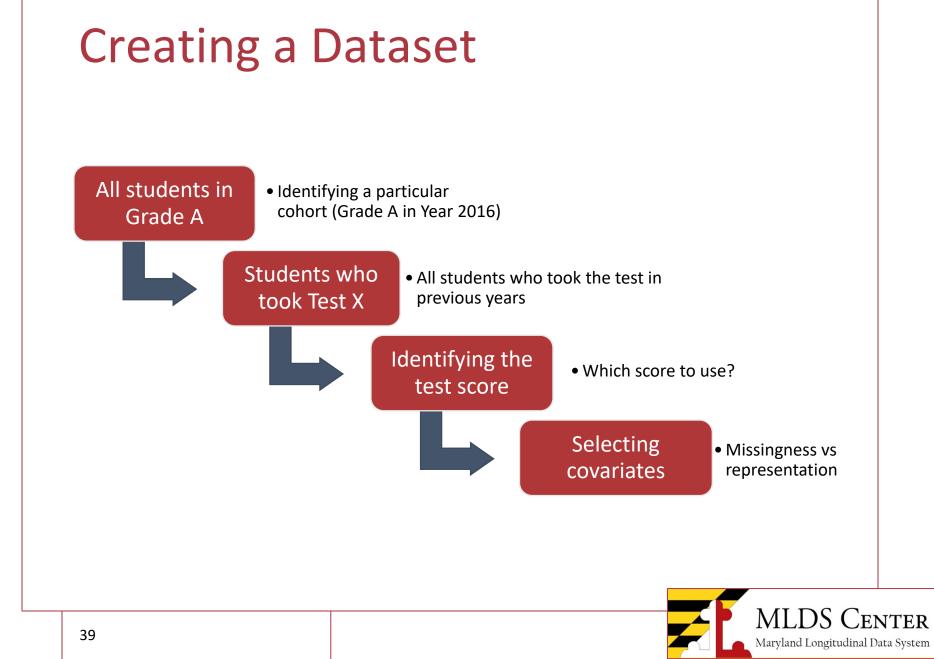
MLDS Application

Future Data Science Projects

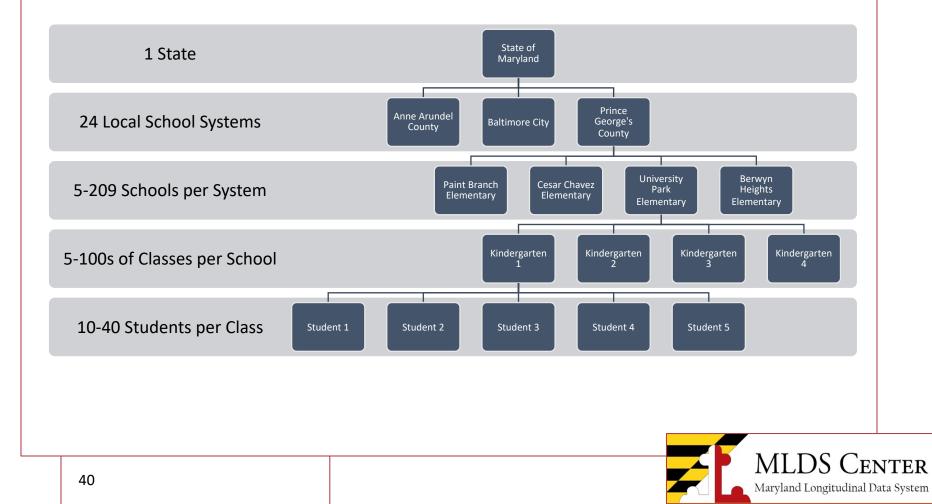
ML Prediction

For What Purpose?

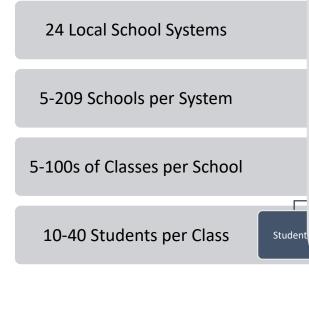
- Can we reasonably predict student success variables?
- Do machine learning algorithms more accurately predict these outcomes over other methods?
- Missing data: Absent students and/or years where certain assessments were not used
- To examine the effects of local school system or state policies on student success



Nested Data is Common in Education

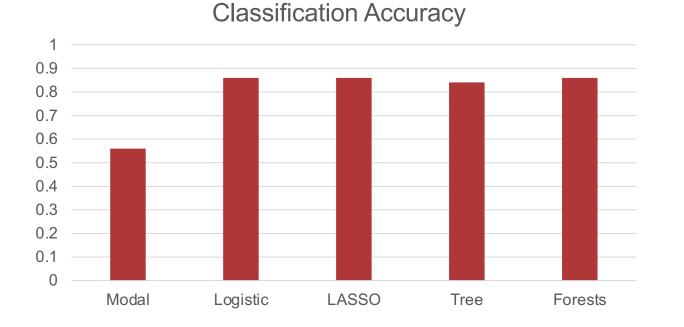


Nested Data is Common in Education



- With existing MLDS classroom, school, and local school system covariates, can the nested data structure be ignored?
- Do ML algorithms do better than parametric models in terms of prediction accuracy?

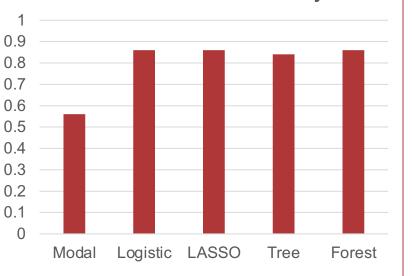
Some Preliminary Results



MLDS CENTER

Considerations When Applying to MLDS Data

- Are all types of students being classified equally well?
- Which groups of students are being classified better? Which groups are worse?
 - Race
 - > Gender
 - > Grade
 - > ELL
 - FARMS
 - Local School System
- Does this vary by method?



ENTER

Maryland Longitudinal Data System

Classification Accuracy

Current Data Science Project

- Which algorithm is accurately predicting which types of students?
- Is there a way to leverage high accuracy across all groups?
- Are these algorithms better than parametric models (multilevel logistic regression)?
- If we can accurately predict student outcomes, how can and should these predictions be used to support students?

Thank you! Questions?

- Tracy Sweet; tsweet@umd.edu
- Brennan Register; brr@umd.edu
- Patrick Sheehan; psheehan@umd.edu